Bayesian prerequisites | Beta and Gamma distributions
In here I will create short intro for beta and gamma distributions two very important distributions form different univariate distributions.
Beta distribution
The beta distribution has support over the interval [0,1] and is defined as follows: \(\operatorname{Beta}(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}\) Where $B(p, q)$ is the beta function: \(B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}\)
Beta function $B$ can also be defined as:
$B(a, b)=\int_{0}^{1} u^{a-1}(1-u)^{b-1} d u \quad a, b \in(0, \infty)$
Parameters:
- $a$ left parameter
- $b$ right parameter
If $a, b \in(0, \infty)$ then $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$
Special case: Incomplete beta function:
$B(x ; a, b)=\int_{0}^{x} u^{a-1}(1-u)^{b-1} d u, \quad x \in(0,1) ; a, b \in(0, \infty)$
When $x=1$, this is complete beta function.
Beta distribution (PDF):
To distinguish $B(a,b)$ is not same as $Beta(a, b) =B(x \mid a,b)$
$B(x \mid a,b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}, \quad x \in(0,1)$
where parameters $a$ and $b$ need to be positive.
The mean and variance of beta distribution:
$\mathbb{E}[X]=\Large \frac{a}{a+b}$
$\mathbb{V}[X]=\Large \frac{a b}{(a+b)^{2}(a+b-1)}$
$\operatorname{Mode}[X]=\Large \frac{a-1}{a+b-2}$
Beta distribution is conjugate to the Bernoulli likelihood.
$p(X \mid \theta)=\theta^{N_{1}}(1-\theta)^{N_{0}}$ $p(\theta)=B(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1}$ $p(\theta \mid X) \propto p(X \mid \theta) p(\theta)$ $p(\theta \mid X) \propto \theta^{N_{1}}(1-\theta)^{N_{0}} \cdot \theta^{a-1}(1-\theta)^{b-1}$ $p(\theta \mid X) \propto \theta^{N_{1}+a-1}(1-\theta)^{N_{0}+b-1}$ $p(\theta \mid X)=B\left(N_{1}+a, N_{0}+b\right)$
Example: Percentage of PDF inside interval
Let’s calculate $Beta(3,1)$ inside $[0,0.5]$ interval using R code.
The beta function in R can be implemented using the beta(a,b)
however to integrate the pdf we need dbeta
function.
integrate(function(p) dbeta(p,3,1),0,0.5)$value
Out:
0.125
Example: Comparing reviews
Suppose one reseller has 80 positive reviews out of 100. The other reseller has two reviews, both positive. You could say the one with 100% approval is better?
We can express pdf using Gamma function:
$f(x) = \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}$
First case: 80 positive out of 100 is $\operatorname{Beta}(81,21)$
$\theta_1 \text{PDF}:\frac{101!}{80!20!} x^{80} (1-x)^{20}$
Second case: 2 positive out of 2 is $\operatorname{Beta}(3,1)$
$\theta_2 \text{PDF}:3y^{2}$
To find the $Pr[\theta_1 > \theta_2]$ we integrate over region $x>y$:
$\int_{0}^{1} \int_{0}^{x} \frac{3 x^{80}(1-x)^{20} y^{2}}{\mathrm{~B}(81,21)} d y d x=\frac{91881}{182104} \approx 0.504552$
It is still better to purchase from the reseller with 80 positive review.
Gamma distribution
In mathematics, the gamma function is an extension of the factorial function to complex numbers:
$\operatorname{Gamma}(\gamma \mid a, b)=\Large \frac{b^{a}}{\Gamma(a)} \gamma^{a-1} e^{-b \gamma}$
Where the $\Gamma(a)$ function is defined as: \(\Gamma(x) = \int_{0}^{\infty} u^{x-1} e^{-u} d u\)
$\mathbb{E}[X]=a / b$
$\mathbb{V}[X]=a / b^{2}$
$\operatorname{Mode}[X]=\frac{a-1}{b}$
Distributions showing only a single peak are called unimodal, bimodal distributions show two peaks in their frequency diagrams.
Gamma distribution is conjugate to the normal with respect to the precision.
Precision is inverse of the variance.
$\gamma=\frac{1}{\sigma^{2}}$
Here is the PDF of the normal distribution:
$\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
If we replace variance with inverse precision we get:
$\mathcal{N}\left(x \mid \mu, \gamma^{-1}\right)=\frac{\sqrt{\gamma}}{\sqrt{2 \pi}} e^{-\gamma \frac{(x-\mu)^{2}}{2}}$
The Wishart distribution is the generalization of the Gamma distribution to positive-definite matrices. The Wishart distribution importance is close to normal distribution in order of importance.
Erlang distribution is Gamma distribution for $a \in \mathbb N$.
Appendix
Exponential family of distribution is huge, among many others, exponential families includes:
- normal
- exponential
- beta
- gamma
- chi-squared
- geometric
- etc.